Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes.
نویسندگان
چکیده
This study demonstrates the stereoselective metabolism of the optical isomers of omeprazole in human liver microsomes. The intrinsic clearance (CL(int)) of the formation of the hydroxy metabolite from S-omeprazole was 10-fold lower than that from R-omeprazole. However, the CL(int) value for the sulfone and 5-O-desmethyl metabolites from S-omeprazole was higher than that from R-omeprazole. The sum of the CL(int) of the formation of all three metabolites was 14.6 and 42.5 microl/min/mg protein for S- and R-omeprazole, respectively. This indicates that S-omeprazole is cleared more slowly than R-omeprazole in vivo. The stereoselective metabolism of the optical isomers is mediated primarily by cytochrome P450 (CYP) 2C19, as indicated by studies using cDNA-expressed enzymes. This is the result of a considerably higher CL(int) of the 5-hydroxy metabolite formation for R- than for S-omeprazole. For S-omeprazole, CYP2C19 is more important for 5-O-desmethyl formation than for 5-hydroxylation. Predictions of the CL(int) using data from cDNA-expressed enzymes suggest that CYP2C19 is responsible for 40 and 87% of the total CL(int) of S- and R-omeprazole, respectively, in human liver microsomes. According to experiments using cDNA-expressed enzymes, the sulfoxidation of both optical isomers is metabolized by a single isoform, CYP3A4. The CL(int) of the sulfone formation by CYP3A4 is 10-fold higher for S-omeprazole than for R-omeprazole, which may contribute to their stereoselective disposition. The results of this study show that both CYP2C19 and CYP3A4 exhibit a stereoselective metabolism of omeprazole. CYP2C19 favors 5-hydroxylation of the pyridine group of R-omeprazole, whereas the same enzyme mainly 5-O-demethylates S-omeprazole in the benzimidazole group. Sulfoxidation mediated by CYP3A4 highly favors the S-form.
منابع مشابه
Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes.
The stereoselective metabolism of lansoprazole enantiomers was evaluated by incubation of human liver microsomes and cDNA-expressed cytochrome p450 (p450) enzymes to understand and predict their stereoselective disposition in humans in vivo. The intrinsic clearances (Clint) of the formation of both hydroxy and sulfone metabolites from S-lansoprazole were 4.9- and 2.4-fold higher than those from...
متن کاملComparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities.
The human clearance of proton pump inhibitors (PPIs) of the substituted benzimidazole class is conducted primarily by the hepatic cytochrome P450 (P450) system. To compare the potency and specificity of the currently used PPIs (i.e., omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole) as inhibitors of four cytochrome P450 enzymes (CYP2C9, 2C19, 2D6, and 3A4), we performed in ...
متن کاملEffects of pantoprazole on xenobiotic metabolizing enzymes in rat liver microsomes: a comparison with other proton pump inhibitors.
The effects of pantoprazole on xenobiotic metabolizing enzymes in rat liver microsomes were examined. Groups of female Sprague-Dawley rats were orally administered pantoprazole and other proton pump inhibitors, omeprazole and lansoprazole, at 5, 50, or 300 mg/kg/day for 7 days, followed by assays to detect changes in the levels of liver microsomal protein, cytochrome P450, cytochrome b5, NADPH ...
متن کاملStereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo(e)dioxathiepin-3-oxide) is a broad-spectrum chlorinated cyclodiene insecticide. This study was performed to elucidate the stereoselective metabolism of endosulfan in human liver microsomes and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of endosulfan. Human liver micro...
متن کاملFasting-Induced Changes in Hepatic P450 Mediated Drug Metabolism Are Largely Independent of the Constitutive Androstane Receptor CAR
INTRODUCTION Hepatic drug metabolism by cytochrome P450 enzymes is altered by the nutritional status of patients. The expression of P450 enzymes is partly regulated by the constitutive androstane receptor (CAR). Fasting regulates the expression of both P450 enzymes and CAR and affects hepatic drug clearance. We hypothesized that the fasting-induced alterations in P450 mediated drug clearance ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 28 8 شماره
صفحات -
تاریخ انتشار 2000